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On the existence of intelligent states associated with the 
non-compact group SU(1,l) 

G Vanden Berghe and H De Meyerf 
Seminarie voor Wiskundige naturkunde, Rijksuniversiteit-Gent Krijgslaan 271-S9, 
B-9000 Gent, Belgium 

Received 17 February 1978 

Abstract. The existence of quasi-intelligent states which are a generalisation of the 
intelligent states satisfying equality in the Heisenberg uncertainty relation is investigated 
for the hyperbolic angular momentum operators which generate the non-compact 
SU(1, 1) group. 

1. Introduction 

In quantum mechanics intelligent states associated with the Heisenberg algebra 
{x, p ;  [x, p ] . =  i} are states which satisfy the Heisenberg equality Ax.  Ap = i. Aragone 
et a1 (1974) were the first to construct the so called intelligent spin states. These 
satisfy the Heisenberg equality AJY . AJ; =a(,)’ for the SU(2) angular momentum 
algebra, and are in fact the solutions of the linear equation 

J& Iw) = (J1 - iaJz)lw) = w iw), (1.1) 
where a is a real number. They can be obtained as linear combinations of Wigner 
states, but they can also be generated from the atomic coherent spin states or Bloch 
states (Aragone er a1 1976). Recently Rashid (1977a) has developed a simple alge- 
braic method which permits the reproduction of the intelligent spin states. Equation 
(1.1) is thereby solved for complex a with the aid of certain operator identities. The 
solutions obtained are called quasi-intelligent states. Only at the end of Rashid’s 
paper is it verified that the states corresponding to real a-values are indeed intelligent. 
The great advantage of Rashid’s method is that it becomes very easy to calculate the 
matrix elements of a wide variety of operators in the new basis. i t  is then also possible 
to develop a general method for the computation of the Clebsch-Gordan coefficients 
for the coupling of intelligent states (Rashid 1977b). 

The non-compact group SU(1, 1) has been studied extensively in the past. Barg- 
mann (1947) discussed all unitary irreducible representations (UIR) of that group and 
the corresponding matrix elements in the discrete basis where the compact generator 
is diagonal. Barut (1967) and Wybourne (1974) have given a unified treatment of the 
construction of the representations of eight three-parameter Lie algebras, including 
SU(1, 1). These papers show that the unitary representations of SU(1, 1) are all 
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infinite dimensional. The eigenstates of the non-compact generators have been con- 
structed with different techniques (Barut and Phillips 1968, Lindblad and Nagel 
1970). The coherent states (the eigenstates of the lowering or raising operator) have 
been found in the discrete basis (Barut and Girardello 1971) as well as in the 
continuous basis (Hongoh 1976). It turns out that such eigenstates are in general not 
simple functions which can be normalised to unity, but in many cases they have to be 
interpreted as generalised functions. 

In the present paper we investigate whether the concept of intelligent state can be 
enlarged to the non-compact SU(1, 1) group. Therefore we first review some pro- 
perties of this group. Then an operator analogous to Jh in (1.1) is constructed. An 
equation similar to (1.1) is solved for complex a -values, and the set of conditions to be 
satisfied such that the eigenstates become intelligent is derived and discussed. 

2. Review of SU(1,l)  

The set of all matrices of the form 

constitutes the non-compact group SU(1, 1). This group has three classes of conjugate 
one-parameter subgroups. A set of linearly independent elements of the Lie algebra 
of SU(1, 1) is deduced from the generators of the subgroups. They are found to satisfy 

[KI, & I =  -iK3, [Kz, K3I = ~ K I ,  I&, K11= iK2, (2.2) 

[K3, K*] = *K*, [K+, K-]  =-2K3, (2.3) 

or in canonical form with K ,  = K 1  * iK2: 

K ,  being the ladder operators. Using a coupled boson representation Schwinger 
(1965) showed that K ,  permits the construction of the Wigner state i j +  1 m )  from the 
state Ijm). The operators K1, K Z ,  K s  are then called the hyperbolic angular momen- 
tum operators. The Casimir invariant is given by 

Cz=K: - K :  -K; .  (2.4) 
The unitary irreducible representations can be grouped into three classes according to 
the spectrum of Cz and K3. In all cases a standard basis {I@ m ) }  can be chosen with: 

(@ m I@ m ’ )  = S,,,, 

Czl@ m> = @(@ + I)[@ m), 

The three series of UIR are: 
(i) the continuous principal series 

m =o ,  *I, * 2 , .  . . c”, @=-++is Q < s < o o  
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(ii) the supplementary series 

- f < @ < O  m = 0, il, 1 2 , .  . . E@, 

@=-I 2 ,  -1 3 -1 2 , ' .  * 

(iii) the discrete principal series 

m =-a, - @ + l , .  . .D& 
m =a, 0-1, .  . , D& 

In what follows we shall only refer to the D i  representation. The non-compact 
generators K 1 ,  K 2  have a continuous spectrum. 

A representation of the Lie algebra (2.2) in terms of boson creation and anni- 
hilation operators, which is suitable for the diagonalisation of the compact generator 
K 3 ,  is given by Barut and Phillips (1968): 

K 1 - -2@Taz+aTa1), 1. K *-2(aTa2-aTa1), -1 3-z(aTai-aTaz), (2.6) K -1 

or 

K-  = iaTa1. K _ '  * i - la laz ,  

In terms of these boson operators 10 m) can be written as 

10 m )  = A,(a?)@"(a~)@-m.  

The normalisation constant A ,  can be determined up to a phase factor by the 
requirement of unitarity (Barut and Phillips 1968), and one finds: 

3. Quasi-intelligent states 

Following Merzbacher (1970) and Rashid (1977a) a quasi-intelligent state associated 
with the commutator [A ,  B] = iC, where A ,  B, C are Hermitian operators, is an 
eigenstate of the operator ( A  -iaB)/(l  -a2)lI2.  Herein a is a complex constant 
different from 1 and -1. For real a-values the corresponding states are intelligent in 
the sense that the Heisenberg equality (AA)'(AB)' = al(C)12 is satisfied. 

Taking into account the commutators (2.2) for the Hermitian generators Kl, K z  
and K3 we define the following operators: 

K;(e)=cosh 8KZ+is inh  OK1, 

K ;  (e) = K 3  f cosh 8 K 1  7 i sinh 8 K2.  

The complex constant 8, related to a by 

is introduced in order to avoid denominators in the definitions. K ;  is a linear 
combination of two non-compact generators and its spectrum is continuous. There- 
fore, the quasi-intelligent states are the solutions of the equation 

K ;  wiQ 4 e) = ~ I Q  4 e), (3.3) 
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and they are labelled by the value of the complex constant and by the eigenvalues of 
the commuting operators K i  and C2. It should be noted that K ;  is only Hermitian 
when 8 is pure imaginary. It follows from (3.1) and (3.2) that K :  and KL are ladder 
operators changing 14) to I4ii) and 14-i) respectively. In the following we shall 
often restrict 4 to take real values only, with the consequence that the matrix 
elements (@ 4’ OlKk (O)l@ 0 )  cannot be given a sense even as distributions in 4 and 
4’ (Lindblad and Nagel 1970). 

We now solve equation (3.3) for Re(O)= 0. Therefore we introduce new boson 
operators by 

dl = (i eel2al + e-*l2a2)/ J2, dZ = (eel2al+i e-”l’a2)/J2, 

or 

a l  = e-e/2(-idl + d2)/J2, (3.5) 

K;(8)=:i(dTdl-d;d2), (3 5 6 )  

I@ 4 e) = A+(dT)@-”(d;)@+”, (3.7) 

a2 = ee/’(dl - id2)/J2, 

so that di = a/ad? and [di, d,*] = &. In terms of these operators K ;  can be written as 

and consequently a solution I@ 4 6 )  of (3.3) is formally given by 

whereby A+ is a normalisation factor to be determined later. With the insertion of 
(3.5) the solution (3.7) becomes 

I@ 4 8 )  =A+(-  J2 “’> ( J 2  

, - e 1 2 ~ ~  +es/2 * e-e/:! a l  * - i  e @ / * a f ) @ + i i  

which by use of the binomial theorem reduces to: 

Letting N + N ’  = @ + m one finds 

whereby (2.8) has been used. Introducing the hypergeometric function, one obtains: 

~ ~ F l ( - @ - - m , - @ + i ~ ; i ~ - m + 1 ; - l ) .  (3.9) 

The normalisation constant A+ follows again from the unitary requirement and is 
formally the same as the normalisation constant for the eigenstates of the K 2  operator 
given by Barut and Phillips (1968): 

(3.10) 

Finally we want to remark that one has to take great care in handling complex powers 
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of complex functions or constants. In  order to avoid ambiguities we adopt the 
convention that in 

the logarithm takes its principal value (-T < arg In U s T ) .  In doing so the ambiguities 
that arise by multiplying d l  and d2 defined in (3.5) by independent phase factors 
(leaving (3.6) invariant) disappear. 

4. Solutions for complex 8 

Although the method of § 3 is only applicable for Re(@) = 0 it  is reasonable to believe 
that (3.9) is valid for any complex value of 8. In either case however the solution 
I@ 4 0 )  is not completely determined since by virtue of (2.9) an m-dependent phase 
associated with A, can subsist in the m-summation. We shall further specify ~ ( m )  by 
direct calculation. Using (2.5), (3.1) and (3.8) one finds: 

K ;  (e) /@ 4 e) = ti(eeK- -e-'K+)I@ 4 e )  

N 

where m has been changed to m + 1 in the first sum and to m - 1 in the second. With 
the help of (2.9) one thus obtains: 

x (iq5 - m) exp[i(.(m)- .r(m + I))] 

x 2 F l ( - @ - m - l , - @ + i 4 ; i q 5 - m ; - l )  
( 

(m - @ -  l ) (@+m) 
iq5-m+1 

+ exp[i(.r(m)- .r(m - l))] 
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By adaptation of a formula for hypergeometric functions given by Vilenkin (1969, 
p 383): 

(U -+ 1 - b  - c ) ~ F ~ ( u ,  b ;  C; -1) 

CZ(C - b )  
= -(c - 1)2Fi(a - 1, b ; c - 1 ; - 1) + ___ ~ F ~ ( c z  + 1, b ;  c + 1; -1) 

C 

into the appropriate form 

-(i4 - m )2F1(-@ - m - 1, -@ + i4 ; i4 - m ; - 1) 

(@+m)(m - @ -  1) 
iq5-m+1 

+ 2F1(-@- m + 1, -@ + i 4 ;  i 4  - m + 2 ;  -1) 

= -2iq52F1 (-4 - m, -0 + iq5 ; id - m + 1 ; - I) ,  (4.2) 

one recognises from (4.1) and (4.2) that (3.9) is a solution of (3.3) if one makes the 
choice: 

exp[i(r(m)-r(m + l))] = i and exp[i(r(m)-r(m - l))] = -i, 2m E 8. 

These equations which are equivalent, are satisfied for 
1 r ( m )  = -5m.rr + r,  

r being an arbitrary m-independent constant which can without loss of generality be 
set equal to zero now. It follows that 

and taking into account the expression (4.3) for A,,,, (3.9) is indeed valid for any 
8-value. 

It may appear striking that I@ q5 e )  only differs by factors eCme from an eigenstate 
of the non-compact generator K2 given by Barut and Phillips (1968): 

K2I@A)=AI@A), 

A* I@.) 2@-ih+m r(@ + iA + 1) 
2 @ m  Am r(iA - m  + l)I '(@+m + 1) 

I@ A )  = - -(i) (4.4) 

x 2F1(-@- m, -@ + iA ; iA - m + 1; -1). 

Nevertheless this could also have been predicted as follows. With the aid of the 
commutation relations (2.2) one easily proves that 

e € @ .  -OK e 3Kz eeK3= cosh 8 K 2 + i  sinh OK1 = KS ( e )  

So one obtains also that 

K ;  (e) = e -eK3~2 ,  (4.5) 

showing that if I@ A )  is an eigenstate of K2, the state e-eK3/@ A )  is an eigenstate of 
K ;  ( e )  with the same eigenvalue. 
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Finally it should be noted that (3.9) could also have been obtained with the method 
of Lindblad and Nagel (1970). Hereby the difference equation resulting from 

Si(eeK- - e-’K+)/@ 4 e) = 410 4 e )  
is solved with given initial conditions by means of Laplace’s method. 

5. Intelligent states 

We now examine the conditions that have to be imposed such that a state of the form 
(3.9) becomes intelligent. From (3.3), (3.1) it follows immediately that 

(5.1) (@ 42 e21cosh 8 ,  K2+i  sinh 8 ,  Kll@ 41 6,)  = 4,(@ 42 e2/@ 41 0,). 

We have set Q1 = Q2 = 0 since all matrix elements vanish for Q1 # Oz. Since 

K ;  (e2)i@ 42 e2)  = 

(@ d2 e2 iw;  (e2)]‘ = (@ d2 e2i42, 

42 e2)  
and 42 is restricted to be a real number, one obtains also 

or 

(@ 42 Oz/cosh 8TK2-i sinh eiK1l@ 4, 0, )  = 42(@ 42 4, el). (5 .2 )  

Combining (5.1) and (5.2) one finds the matrix elements of K1 and K 2 :  

i sinh(el + e; I(@ 42 e21Kll@ dl el) = (dl cosh e; - 42 cosh el)(@ dz e21@ 41 el), 
(5.3) 

i sinh(O1 + e?)(@ 42 e21K21@ 4, e,) = (4, sinh 6 ;  +d2 sinh el)(@ d2 021@ 42 e,). (5.4) 
In an analogous way one proves that 

(@ d2 e21(cosh el K2+i sinh el 41 e,) = +?(@ 42 e2i@ 4, el), 
(@ 42 e21(cosh e; K Z  - i sinh e; K ~ ) ’ I @  4, el) = &(@ 42 e2i@ 4, el), 

( 5 . 5 )  

(5 .6 )  

(5.7) 

(a 42 e21(cosh 0; Kz-i sinh e,* Kl)(cosh d l  K2+i sinh 8 ,  Kl)l@ 41 el)  
= 4, &(@ 42 &I@ 4, el), 

and by suitable combination of (5.5)-(5.7) the matrix elements of K :  and K :  can be 
derived with the help of the commutation relations (2 .2) :  

sinh2(01 + e? )(@ 42 e 2 i ~ :  I@ 41 e,) 
= -(4, cosh e; - 42 cosh el)’(@ 42 e21@ 41 el)  

+sinh(O1 + e ; )  cosh e l  cosh e;(@ 42 e2jK31@ 41 el), 
sinh2(8, + e;)(@ 42 e 2 / ~ :  I@ d1 el)  

= (4, sinh e,* +42 sinh el)’(@ 42 O Z l @  41 0,) 

+sinh(O1 + 0 ; )  sinh sinh e?(@ 42 &lK&3 41 01). 

Defining as usual 

(AKj! ) = ( K ?  ) - (Ki)‘ i = l , 2 ,  

(5.9) 

(5.10) 



1576 G Vanden Berghe and H De Meyer 

(5.11) 

+sinh(O1 + 8;) sinh e l  sinh e;(@ 42 021K31@ 41 el). (5.12) 

Considerable simplifications occur in (5.1 l), (5.12) if 

(@ 42 e21@ 4, el)  = 0 or 1, (5.13) 

or in extenso if the states /@4e)  form an orthonormal set. In the SU(2) case a 
condition equivalent to (5.13) was incorrectly supposed to be satisfied in formulae 
(42a)-(5 1) of Rashid’s paper (Rashid 1977a). Indeed, the SU(2) quasi-intelligent 
states form an overcomplete non-orthogonal set, but they can be normalised to unity, 
with the consequence that the diagonal elements of the analogue of (5.13) reduce to 
one. In going over to SU(1, 1) we do not expect to  gain orthogonality. What is more, 
we have to be aware that matrix elements can behave as distributions. In the latter 
case it is suitable to define a new inner product as follows: 

(5.14) 

The same simplifications as with (5.13) are then obtained if 

( ~ 4 ~  e l w l  e ) = w 2 - 4 1 ) ,  (5.15) 

i.e. if the eigenfunctions are delta-normalisable. 

satisfied, the expressions (5.1 l), (5.12) are thus reduced to: 
In the special case = 8 2  = 8, and assuming that either (5.13) or (5.15) is 

sinh2(8 + e*)(@ d2 e)lAK: I@ 41 e)  = sinh(8 +e*) cosh 8 cosh e*(@ 42 81K31@ d1 e), 
sinh2(8 + e*)(@ 42 elAK: 10 41 e )  = sinh(8 + e * )  sinh 8 sinh e*(@ 4z 8 / K 3 / @  41 e) .  

Clearly, if Re 8 # 0 one has the equality 

sinh 8 cosh 8 sinh 8* cosh 8* 
sinh2(B + e*) ( A K : ) ( A K : ) =  (K3>2, 

or 

(K3Y 
sinh2(2 Re 8)-sinh2(2 Im e )  

(5.16) 

From the foregoing and taking into account that the right-hand side of (5.16) becomes 
equal to $(K3)2 if Im(6) = 0, we can conclude that suficient conditions for a quasi- 
intelligent state to be also intelligent are firstly that the state is normalised to unity as a 
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function or as a distribution, and that secondly 8 is a real number. If on the other 
hand 8 = 0, then K ;  is identical to K2 and the corresponding eigenstates reduce to 
those given in (4.4). By taking the limit 8 + 0 in the right-hand side of (5.16) one 
notices that these states can also be considered intelligent on condition of normalisa- 
tion. 

6. The normalisation constraint 

In this section we investigate whether the states (3.9) are normalisable. To this end 
use is made of a result given by Barut and Phillips (1968). In the basis of eigenvectors 
of K 2  the authors derived the matrix elements of a K3-rotation eioK3: 

(0 p jeiUK3j@ A ) 

x2Fl(-@+iA, -@-ip; 1 + i A  - i p ;  - b 2 / a 2 )  

where 

U = COS(W/2), b = sin(w/2) 

and the phase of ( -b )  is chosen to be e'". With the help of (6.1) they also proved that 
the states I@ A )  are delta-normalised. Indeed, it can be shown by setting w = 0 in (6.1) 
and by taking into account the formula 

the prescription to surround the poles on the real x axis in the left-hand side of (6.2) 
being the principal value prescription, that: 

(@ pj@ A )  = a(p - A ) .  

(@ & e/@ h 8) = (@ #4 exp[-(8 + 8 * ) ~ ~ l I @  6dr 

(6.3) 

From the operator identity (4.5) it is clear that 

(6.4) 

whereby I@ 4 j )  is the eigenstate of KZ belonging to the real eigenvalue di. Now the 
right-hand side of (6.4) is equivalent to the left-hand side of (6.1) if one substitutes: 

w = i(8 + e*) = 2i Re 8. (6.5) 

Although (6.1) is strictly valid only for real w ,  the right-hand side of (6.1) can be 
analytically continued to pure imaginary w .  Nevertheless, it is easy to see that 
whatever the nature of w is, the expression (6.1) becomes infinite for A = p due to the 
pole of T(iA - i p )  or r ( ip  - ih), whereas for A f p and Re 8 f 0 this expression is 
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different from zero. This shows us that the eigenstates I@ 46) are not delta-normal- 
isable. Only if Re 8 = 0, one obtains 

ReO=O, 

demonstrating that the K z  eigenstates are intelligent states associated with the hyper- 
bolic angular momentum algebra and the commutator [ K 2 ,  K1] = iK3. It is obvious 
that the above results do not exclude the possible existence of a measure enabling 
normalisation of all the quasi-intelligent states. 

Among the artificial methods to overcome the normalisation constraint problem, 
there is an almost trivial one. In analogy with the compact case, define a state 

p 4 e') = p 4 - e * )  

(@ 42 eel@ 41 6 )  = (@ 42/@ 41) = ~ ~ - 4 ~ ) .  

with the consequence that 

Defining further the expectation values of operators by 

(@ 4 6'1 operator I@ 4 e), 
all the states I@ 4 0 )  with Im 6 = 0 are intelligent with respect to the newly defined 
inner product. 
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